Impact of flow rates in a cardiac cycle on correlations between advanced human carotid plaque progression and mechanical flow shear stress and plaque wall stress
نویسندگان
چکیده
BACKGROUND Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood. METHOD In vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations. RESULTS Using follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates. CONCLUSION Flow shear stress corresponding to the minimum flow rates in a cardiac cycle had slightly better correlation with WTI, compared to FSS corresponding to maximum flow rates. Choice of maximum or minimum flow rates had no impact on PWS correlations. Advanced plaque progression correlated positively with flow shear stress and negatively with plaque wall stress using follow-up scans. Correlation results using FSS at the baseline scan were inconclusive.
منابع مشابه
Correlations between carotid plaque progression and mechanical stresses change sign over time: a patient follow up study using MRI and 3D FSI models
BACKGROUND Increasing evidence suggests that mechanisms governing advanced plaque progression may be different from those for early progression and require further investigation. Serial MRI data and 3D fluid-structure interaction (FSI) models were employed to identify possible correlations between mechanical stresses and advanced plaque progression measured by vessel wall thickness increase (WT...
متن کاملA numerical study of the effect of varied blood pressure on the stability of carotid atherosclerotic plaque
BACKGROUND Blood pressure (BP) is associated with early atherosclerosis and plaque rupture because the BP variability can significantly affect the blood flow velocity and shear stress over the plaque. However, the mechanical response of BP variability to the plaque remains unclear. Therefore, we investigated the correlation between different maximum systolic blood pressure (SBP) and the stress ...
متن کاملThe effect of turbulence model on predicting the development and progression of coronary artery atherosclerosis
A severe case of stenosis in coronary arteries results in turbulence in the blood flow which may lead to the formation or progression of atherosclerosis. This study investigated the turbulent blood flow in a coronary artery with rigid walls, as well as 80% single and double stenoses on blood flow. A finite element-based software package, ADINA 8.8, was employed to model the blood flow. The hemo...
متن کاملHuman coronary plaque wall thickness correlated positively with flow shear stress and negatively with plaque wall stress: an IVUS-based fluid-structure interaction multi-patient study
BACKGROUND Atherosclerotic plaque progression and rupture are believed to be associated with mechanical stress conditions. In this paper, patient-specific in vivo intravascular ultrasound (IVUS) coronary plaque image data were used to construct computational models with fluid-structure interaction (FSI) and cyclic bending to investigate correlations between plaque wall thickness and both flow s...
متن کاملPulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation Positive Correlation between Plaque Location and Low and Oscillating Shear Stress
Fluid velocities were measured by laser Doppler velocimetry under conditions of pulsatile flow in a scale model of the human carotid bifurcation. Flow velocity and wall shear stress at five axial and four circumferential positions were compared with intimal plaque thickness at corresponding locations in carotid bifurcations obtained from cadavers. Velocities and wall shear stresses during diast...
متن کامل